Material of Efficiency of functional brain networks and intellectual performance
نویسنده
چکیده
Supplemental Materials and Methods Data acquisition Resting state fMRI. Our brain is a complex dynamic system in which information is continuously processed and transferred between brain regions with highly correlated functional dynamics (Sporns et al., 2000; Sporns et al., 2004). These coherent dynamics are believed to reflect the existence of functional connections between these regions. Functional connectivity is defined as the temporal coherency between neuronal brain signals of anatomically separated brain regions (Aertsen et al., 1989; Friston et al., 1993) and is widely investigated by measuring the correlation between resting-state Blood Oxygen Level Dependent functional Magnetic Resonance Imaging time-series (Biswal During rest, brain regions produce a vast amount of spontaneous neuronal activity (Raichle et al., 2001; Raichle and Snyder, 2007) which can be measured with these resting-state BOLD fMRI
منابع مشابه
Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملComputer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
متن کاملEfficiency of functional brain networks and intellectual performance.
Our brain is a complex network in which information is continuously processed and transported between spatially distributed but functionally linked regions. Recent studies have shown that the functional connections of the brain network are organized in a highly efficient small-world manner, indicating a high level of local neighborhood clustering, together with the existence of more long-distan...
متن کاملP27: Brain Network as a Pivotal Part in Intelligence Function
Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...
متن کاملTinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity
Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain...
متن کامل